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SUMMARY 

A class of stable least-square finite element methods for non-linear hyperbolic problems is developed and 
some exploratory studies made. The methods are based on modifying the L2-norm of the residual and a 
related approximation to the HI-norm of the residual. The effect of the additional terms in these residual 
functionals is to introduce a dissipative effect proportional to the solution gradient. This acts to stabilize the 
solution for non-linear hyperbolic problems which generate shocks. Numerical results for a one-dimensional 
nozzle and shock tube problem demonstrate the accuracy and stability of the method. Results are for an 
implicit scheme and calculations for linear, quadratic and cubic elements are given. 

KEY WORDS Least squares Finite elements Non-linear Hyperbolic 

INTRODUCTION 

There have been several interesting studies of least-squares methods for solving partial differential 
equations. Eason’ presents a review of some earlier work in this area. Recently, least-squares 
finite element methods have been constructed and applied to a variety of different problems with 
some s u c ~ e s s . ~ - ~  In previous studiesI2, l 3  we described a least-squares residual finite element 
method for hyperbolic problems. There it was demonstrated that this approach acts naturally in a 
manner similar to streamline upwinding and contains no ‘free’ parameters. For linear problems 
the method is unconditionally stable at all Courant numbers and the numerical results of its 
performance are very encouraging. 

Our approach in these previous studies has been based on minimizing the residual in the L2 
norm. However, for high-speed compressible flow problems numerical experiments reveal that 
this approach fails due to the presence of a non-linear instability that becomes pronounced as a 
developing shock steepens. Similar difficulties have been observed for other finite element 
methods applied to this class of problems and various forms of artificial dissipation have been 
introduced to stabilize the methods. For example, Lohner et a l l 4  and Oden et al.” employ 
Lapidus’ artificial viscosity in their Taylor-Galerkin finite element method; Morgan et ~ 1 . ’ ~  
examine ‘flux-corrected transport’; Hughes and Mallet17 adapt some ideas from recent high- 
resolution difference techniques into their Petrov-Galerkin finite element scheme; and Selmin 
and Quartapelle18 add an artificial viscosity to the Taylor-Galerkin method of Donea. Hughes” 
has made several extensions to develop SUPG schemes and Wahlbin et aL2’ have provided 
related error estimates. 

In the present paper we first describe the L2-residual least-squares method for one-dimensional 
hyperbolic systems and later demonstrate the numerical instability. We then propose modifica- 
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tions to the form of this functional based on the least-squares H'-residual functional. The 
objective is to exert derivative control using ideas from multi-objective optimization theory to 
stabilize the approximate solution. This approach yields an additional numerical viscosity 
proportional to the solution gradient. Numerical results for nozzle and shock tube flows conclude 
the development. Our purpose here is to extend the least-squares approach and make some 
preliminary studies of its numerical accuracy to better understand this class of methods. No 
definitive comparison with other methods is attempted. 

FORMULATION 

L2-residual scheme 

Consider a first-order hyperbolic problem of the form 

all au 
- + A ( u ) - = f .  
at ax 

For a given time step At = t,, -t,, let us linearize the problem by setting A ,  = A(u,) and then 
backward difference to obtain the implicit time-differenced problem 

U n + l - u n  aUn+1  

At ax + An __ -,f, + 1 = 0. 

Introducing the L2-norm of the residual R for admissible u , + ~  in (2), 

Taking variations with respect to un+ and setting u = dun+ 1, 61 = 0 implies 

which evidently corresponds to a Petrov-Galerkin-type scheme with test function 
u + A t  A ,  au/dx. This approach introduces a numerical dissipation scheme of similar nature to 
that in Lax-Wendroff and Taylor-Galerkin methods as demonstrated in Carey and Jiang.' 
However, as in these methods, it is found that due to the non-linearity, computations for high- 
speed compressible flows become numerically unstable when shocks form. We present some 
representative numerical results for a shocked nozzle flow exhibiting the unstable behaviour later. 

Weighted HI-residual schemes 

Since the non-linear instability becomes manifest as the solution gradient steepens during 
shock formation, this suggests that additional derivative control could provide a mechanism for 
stabilizing the solution. In the context of our least-squares residual formulation, this can be 
achieved in several ways; e.g. by including additional artificial viscosity terms in the functional, 
adding a penalty functional to constrain the gradients or considering alternative forms of the 
functional. For example, a natural modification is the weighted H'-norm of R, 
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for the minimization problem, where /3 is a positive small-scale factor. We can view (5) simply as a 
multi-objective optimization function where the weight /? is chosen to emphasize the principal 
objective function of interest. 

Introducing the residual R of (2) into (5) and taking variations, the weak statement becomes 

Introducing finite element expansions for u, and u,+ 1, together with the above modified least- 
squares approximations, yields a linear system of equations to be solved for the vector of nodal 
unknowns defining u, + We seek to obtain a finite element solution with good shock resolution, 
but also suppress the numerical instability at the shock due to the increasing derivative. The 
additional functional acts as a control mechanism on the size of the derivative but should not be 
so strong that the solution is over-dissipative. Note, however, that the form in (6) contains second 
derivatives of u and u which implies that C' elements such as cubic splines are appropriate for a 
conforming scheme based on this higher-order statement. Since in practice we want to be able to 
employ simpler elements with Co bases, we consider two practical approximate forms based on (5) 
and (6). In the first we assume that the second-order derivative terms in (6) are of lesser 
importance and may be omitted. The resulting integral statement now becomes 

which involves an additional artificial dissipation contribution, /?(1 + A t  A h ) 2 ~ : ,  + u', where the 
'prime' indicates differentiation in x. This term corresponds to adding the stabilization functional 
p J( 1 +At  Ah)'(ub+ 1)2 dx to J R 2  dx. Integrating by parts reveals that the corresponding numeri- 
cal viscosity term in the associated Euler equation is 

- /?[( 1 + A t  u;+ 13'. 

That is, for /? #O we have added an artificial dissipation with a term of order At  proportional to 
A: and the proposed scheme is a specific form of artificial dissipation technique. As an example, in 
the familiar Burgers' equation Ah=u; so that, as ub grows locally and the shock steepens, 
proportional dissipation is added to stabilize the calculation. In the numerical experiments 
discussed later we have 0 < p g 1. 

The second appropriate formulation based on (6) can be constructed using higher-degree 
elements in a Co non-conforming method. That is, for (5) we write the element accumulation 

T= 1 E I,= {joe[R2+/?(g)2]dx} 

e = l  e = l  

and use a 'non-conforming' Co Lagrange finite element basis to construct a finite element 
approximation to the minimizer of 2 For example, the contributions of the second derivatives in 
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the element interiors can be calculated with non-conforming Co quadratic or cubic elements. 
Some representative results for this approximation are also given later. 

The basic formulation above can be extended in several ways. The generalization to hyperbolic 
systems in one dimension is immediate-simply interpret u, f as vectors and A as a matrix (see the 
numerical examples following). A similar treatment can be made for problems in higher 
dimension and will be considered in a later study. 

NUMERICAL RESULTS 

Inviscid Burgers’ equation 

As an introductory example, we consider the inviscid Burgers’ equation 

with initial data 

corresponding to an initial slant step. 
The slant step steepens as time increases to form a ‘shock.’ In the absence of derivative control 

( p  = 0), the calculations are non-linearly unstable in that, as the shock forms, local oscillations 
develop (Figure 1) that grow catastrophically. Similar problems arise from the Taylor-Galerkin 
approximation and the solution ‘blows up’ after t=0-4.” In Figure 2(a) we show the computed 
solution for scheme (7) at t =0.4 for computations on a uniform mesh of 100 linear elements with 
fixed time step At = 0.02 and parameter j3 = 0.0000 1. The numerical experiment is repeated in 
Figure 2(b) for scheme (8) on a uniform mesh of 50 quadratic elements with parameter 
/I =00001. The derivative control stabilizes the procedure. 

0 

;i 

-- 
0 . 6 0  0.80 1 .00  

X 

Figure 1. Oscillation of solution to Burgers’ equation as shock forms for Lz-residual approach 100 linear elements, 
At = 0.02, t = 0.2 
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Figure 2. Solution to Burgers' equation from initial slant step: (a) 100 linear elements, At=0.02, t=0.4, /l=O.oooOl; 
(b) 50 quadratic elements, At=0.02, t=0.4, / l = O O 1  

Isothermal flow in a nozzle 

The equations governing isothermal flow in a nozzle constitute a system of the form (1) with 

where p is the density, u is the velocity, the speed of sound c is normalized to unity and the cross- 
sectional area of the nozzle is 

a= 1.0+(~-2*5)~/12.5, 0 6 x 6 5 .  (12) 

In Figure 3 numerical results for u are shown for the case of subsonic inflow and outflow with an 

zz 0 0 . 0 0  1 . 0 0  2 . 0 0  3 .00  4 .00  5 . 0 0  

X 

Figure 3. Deterioration of isothermal nozzle flow solution as shock forms for Lz-residual approach: h=0.125, Af =0.5, 
t = 8.5; initial condition ~ Q U  = 1.0, p = 1.493 
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interior supersonic flow regime terminating in a shock, using the L2-residual method and linear 
elements. As indicated previously, the shock begins to form but becomes unstable near t = 8.5 for 
calculation on a mesh with 40 uniform linear elements. Mesh refinement to 80 uniform linear 
elements does not remove or delay the onset of instability. Similar instabilities arise for 
calculations with more conventional Petrov-Galerkin and Taylor-Galerkin methods in the 
absence of a control mechanism such as that indicated here. Results for the first stabilized scheme 
(7) and linear elements are shown in Figure 4 for calculations with h=0.125 once again and a 
time step At = 0.5, with fl=O.OOOl. The (essentially) steady-state solution is attained after 80 time 
steps. These results compare favourably with those of Hughes and TezduyarZo and of Lohner et 
al.14 who use different artificial viscosity techniques as stated in the Introduction. 

Shock tube problem 

form (1) with 
The one-dimensional Euler equations for compressible flow can be expressed as a system in the 

U P  0 

0 Y P  u 

u=[ 3 .-[ 0 u .--'I, f=O, (13) 

where p is the density, u is the velocity, p is the pressure and y is the ratio of specific heats. For the 
shock tube problem the initial data are 

u= [ It] for xQ0.50, u= [ for x>0.50. 

The objective is to compute accurate approximations to p, u and p at subsequent times as the 
shock and contact discontinuities propagate along the tube. This problem was computed by 
Sodz2 with finite difference techniques and subsequently investigated by Baker,z3 Lohner et al.14 
and Hughes and Mallet" using finite elements. The problem is solved here using the modified 
least-squares scheme (7) with a uniform mesh of 100 linear elements and fixed time step At =0.005. 
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Figure 4. Stabilized solution at t=40 for isothermal flow in a nozzle using modified functionals and linear elements: 
h=0.125, A t = 0 . 5 ,  fl=O.OOOl 
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The solution profiles for density, velocity and pressure at t=0.14 are shown in Figure 5. There is 
moderate smearing of the ‘fronts’ and the solution is neither oscillatory nor unstable. We remark 
that these calculations with linear elements were stable for f l=  0. Finally we also include sample 
results for pressure at t =0.14 in Figure 6 obtained for the ‘non-conforming’ approximation (8) 
based on Co linear, quadratic and cubic elements. For quadratic and cubic elements the method is 
unstable for p = O  but stable for small positive p. The linear case (Figure 6(a)) reduces to 
scheme (7). Increasing the degree of the element with this formulation appears to have little effect 
on accuracy since the error is dominated by the time integration error and, further, dissipation is 
proportional to the time step. Reducing the time step would improve accuracy but increase 
computation time. 
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x X 

Figure 5. Density, velocity and pressure profiles for Sod’s shock tube problem with h=O01, At=0905 ,  fl=O.O at 1 =0.14 
using linear elements 
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Figure 6. Results for Sod’s problem using linear, quadratic and cubic elements: (a) 50 linear elements, At=0.007, t =0.14, 
B = O Q  (b) 50 quadratic elements, At=0.007, t=0.14, ~=090001; (c) 50 cubic elements, At=0.007, t=O14, ~=O~oooOl 

CONCLUDING REMARKS 

A modified form of the least-squares finite element method is developed. The scheme appears 
stable for non-linear problems such as those associated with shocks in gas dynamics. In this 
presentation we have considered an implicit backward-difference time discretization of the locally 
linearized equations. Clearly other variants of the scheme are possible and some generalizations 
are given in Carey and Jiang.” We are also presently extending the scheme to two-dimensional 
Euler equation calculations for shocked compressible 

The implicit schemes involve system solutions in each time step and consequently for two- and 
three-dimensional problems are expensive if time-accurate solutions are needed. For implicit 
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linear schemes we have also shown” that the method is unconditionally stable at all Courant 
numbers and hence the scheme promises to be efficient for computing steady flow fields. This idea 
has also been receiving increasing attention as a viable strategy by researchers using other 
methods. Moreover, quasi-explicit schemes can also be constructed by lumping and transposing 
the implicit contribution of the algebraic system to the right side and iteratively correcting this 
term repeatedly with each time step. However, for large time steps the added dissipation near 
shocks will be significant and the approximation dissipative. Thus the stability is offset by loss of 
accuracy and this appears to be a principal detraction of the method at present. 

Finally we remark that in the course of the present numerical studies we also examined some of 
the other artificial dissipation schemes used in Galerkin-based finite element algorithms and finite 
difference schemes, specifically those included in a Lapidus-type dissipation term and a TVD-type 
term. These were included in the least-squares approach via additional contributions to the L2- 
residual functional. Results with these least-squares schemes were inferior to those obtained here 
using the dissipative control term involving the element residual derivatives. 
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